67 research outputs found

    Three paradigms in developing students' statistical reasoning

    Get PDF
    This article is a reflection on more-than-a-decade research in the area of statistics education in upper primary school (grades 4-6, 10-12 years old). The goal of these studies was to better understand young students’ statistical reasoning as they were involved in authentic data investigations and simulations in a technology-enhanced learning environment entitled Connections. The article describes three main paradigms that guided our educational and academic efforts: EDA, ISI, and Modeling. The first, EDA, refers to Exploratory Data Analysis – children investigate sample data they collected without making explicit inferences to a larger population. The second, ISI, refers to Informal Statistical Inference – children make inferences informally about a larger population than the sample they have at hand. The third, Modeling-children use computerized tools to model the phenomenon they study, and simulate many random samples from that model to study statistical ideas. In each of these three paradigms, we provide a short rationale, an example of students’ products, and learned lessons. To conclude, current challenges in statistics education are discussed in light of these paradigms

    Statistical reasoning learning environment

    Get PDF
    This article describes a model for an interactive inquiry-based statistics learning environment that is designed to develop students’ statistical reasoning. This model is called a “Statistical Reasoning Learning Environment” (SRLE) and is built on the socio-constructivist theory of learning and teaching. This model is based on six principles of instructional design: fundamental statistical ideas, motivating real data sets, inquiry- and data-based classroom activities, innovative technological tools, classroom norms, and alternative assessment. Two examples of SRLEs are briefly discussed

    Ariadne’s thread, daedalus’ wings and the learners autonomy

    Get PDF
    Il existe une tension apparente entre l’idĂ©e d’apprenant autonome, promue par les tenants des classes « participatives », et l’argument participatif selon lequel l’apprentissage est un processus intrinsĂšquement collectif d’induction vers des formes d’action historiquement Ă©tablies. Dans cet article, nous essayons de comprendre la nature de cette tension et ses consĂ©quences pour les pratiques d’éducation. Nous commençons par une brĂšve prĂ©sentation de la perspective commognitive sur l’apprentissage, qu’on peut considĂ©rer comme une version particuliĂšre de l’approche participative, selon laquelle la pensĂ©e est une forme individualisĂ©e de la communication interpersonnelle et l’apprentissage scolaire un processus de modification et d’extension de ce discours. Nous introduisons alors la distinction entre apprentissage niveau-objet et apprentissage niveau-meta, ce dernier nĂ©cessitant de suivre ceux-qui-savent plutĂŽt que de se limiter Ă  conduire ses propres explorations inventives. Nous soutenons qu’un certain taux de comprĂ©hension et d’accords mutuels est nĂ©cessaire pour que l’apprentissage mĂ©ta soit efficace. Quelques exemples illustratifs, pris en classes de mathĂ©matiques et de statistiques, montrent un apprentissage qui survient alors que l’accord est respectĂ©, et d’autres ce qui se passent lorsque certains Ă©lĂ©ments de cet accord sont violĂ©s. Nous concluons avec une mise en garde contre une interprĂ©tation rapide et unidimensionnelle du principe de l’autonomie de l’apprenant

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8 TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eÎŒe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF
    • 

    corecore